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The compiler assists with automatic 
granularity adjustments

− Distinguish between communication 
and computation granularity

− Computation granularity largely 
based on architecture characteristics

− Compilers focus on what  they are 
good at (small well-de�ned tasks)

− Programmers focus on what they are 
good at (identifying high-level paral-
lelism within their applications)

Granularity

We are working on it. [NDA]
[NDA] Improved Support for MIC

: invocations 
(messages)

: other chares

: data parallel 
chares

: broadcast 
chare

...

The runtime tightens the execution model of sub-computations 
when it is bene�cial

− Start with an arbitrary execution model (asynchronous tasks)
− Take advantage of patterns (broadcasts, stencil patterns, 

n-body spatial decompositions, etc.)

Improved Support for GPUs

− Accounting for the non-peer 
relationships (or topology) of 
the cores (i.e. host cores and ac-
celerators are not peers to one 
another)node Nnode 2node 1

− Dividing a heterogeneous 
workload across a set of hetero-
geneous cores, matching sub-
computations to the appropri-
ate corescore P...core 2core 1

− Dividing a homogeneous 
workload across a set of hetero-
geneous cores to minimize the 
time-to-solutioncore P...core 2core 1

Dynamic Load Balancing
Continuing & Future Work

Screenshot from the Projections performance visualization tool being 
used to show the MD program executing on our heterogeneous cluster.

Simple MD program’s performance on our cluster
(NOTE: 1 Cell Pair = 1 PS3 Cell & 1 QS20 Blade Cell)
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Heterogeneous applications may scale better on heterogeneous clusters (compared to a homogeneous cluster)
− We demonstrate a simple MD program that scales better using a mixture of x86 and Cell processors (compared to just using Cells)

− Reaches 19.8% of peak using one dual-core x86 processor, four PS3 Cells, and four IBM blade Cells
− Does not include any architecture speci�c code or code to translate data between architectures
− Makes use of three di�erent core types (x86, PPE, SPE), three di�erent SIMD extensions, two di�erent memory schemes, and two 

endian schemes (little and big endian)

Performance on a Heterogeneous System
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Programming model provides:
− Clearly de�ned communication boundaries
− Typing and array information (requirements/limitations)

The runtime system handles tedious (but necessary) tasks related 
to heterogeneous execution, such as:

− Interoperability between di�erent “�avors” of the runtime 
system within a single application execution

− Real-time manipulation of application data between cores 
(e.g. big vs. little endian encodings)

Heterogeneous Execution

entry [ accel ] void dotProduct (
     int N,
     �oat a[N]
) [
     readOnly : �oat b[N] <impl_obj−>myVector>,
     writeOnly : �oat c <impl_obj−>myResult>
] {

     int i ;
     c = 0.0f;
     for (i = 0; i < N; i++) {
          c += a[i] * b[i];
     }

} dotProduct_callback;

ChareClass::dotProduct_callback() {
     someOtherChare.someEntryMethod(c);
}

Callback Function (host)

Function Body
(host or accelerator)

Local Parameters (i.e. data within chare)

Passed Parameters (i.e. from caller)

Asynchronous tasks with an arbitrary execution model
− Well de�ned working sets
− Can execute on either the host or an attached accelerator 

(based on a load balancing scheme)
− Splits a single standard entry method into two stages

− Accelerated function body (limited)
− Associated callback function (general)

Accelerated Entry Methods

Chare D

void entryMethod_1() {
   doSomeWork();
   MyMessage msg = new MyMessage();
   B.entryMethod_2(msg);   // returns immediately
   doMoreWork();
}

void entryMethod_3(int var1, float var2) { ... }

Chare A

Chare C[0]

Chare C[1]
Chare C[2]

void entryMethod_2(MyMessage *msg) {
   delete msg;
   int myInt = 4;
   float myFloat = 3.14f;
   A.entryMethod_3(myInt, myFloat);
}

Chare B

Chare C[3]

Chare C[4]

Chare C[5]

Chare E
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Nature of the Charm++ programming model
− Based on asynchronous tasks (unlike threads in MPI)
− Migratable chare objects allow data and computation to be 

load balanced dynamically by the runtime system
− Highly scalable, mature programming model

Existing Infrastructure
− Runtime system
− Load balancing framework
− Projections (performance visualization tool)

Why Charm++?

As if parallel programming wasn’t already considered hard 
enough, heterogeneous systems add additional di�culties

− Non-portable, architecture speci�c code
− Mixture of di�erent execution models (e.g. multicore host 

with GPU attached)
− Load balancing is harder due to the mismatch in performance 

characteristics of the various cores

... Here comes the “but” ...
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x86s & GPUs

Green500 #10

Nebulae
x86s & GPUs

Top500 #3
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Green500 #9

QPACE (x3)
x86s & Cells

Green500 #5

LOEWE-CSC
x86s & GPUs

Top500 #22, Green500 #8

TSUBAME 2.0
x86s & GPUs

Top500 #4, Green500 #2+

Lincoln
x86s & GPUs

Condor
x86s, GPUs, & Cells

MariCel
POWERs & Cells

Roadrunner
x86s & Cells
Top500 #7

Tianhe-1A
x86s & GPUs

Top500 #1

Heterogeneous systems are becoming more popular
− Several appearances on the Top500 and Green500 lists
− Can be e�ective for small research clusters (greater perfor-

mance per dollar)
Bene�ts of heterogeneous systems

− High �op rates per dollar
− High �op rates per watt

Stepping into the Heterogeneous

To understand how programming models, compilation tech-
niques, and runtime systems can help ease the burden associ-
ated with programming heterogeneous systems.

Our Goal

Programming Heterogeneous Systems
David M. Kunzman and Laxmikant V. Kalé, Parallel Programming Laboratory, University of Illinois at Urbana-Champaign


