David M. Kunzman and Laxmikant V. Kalé, Parallel Programming Laboratory, University of lllinois at Urbana-Champaign

Programming Heterogeneous Systems

Our Goal Accelerated Entry Methods Heterogeneous Execution Continuing & Future Work
To understand how programming models, compilation tech- Asynchronous tasks with an arbitrary execution model Programming model provides: Dynamic Load Balancing
niques, and runtime systems can help ease the burden associ- — Well defined working sets — Clearly defined communication boundaries
ated with programming heterogeneous systems. — Can execute on either the host or an attached accelerator — Typing and array information (requirements/limitations) — Dividing a homogeneous
. . (based on a load balancing scheme) The runtime system handles tedious (but necessary) tasks related workload across a set of hetero-
Stepp"]g into the Heterogeneous — Splits a single standard entry method into two stages to heterogeneous execution, such as: geneous cores to minimize the
— Accelerated function body (limited) — Interoperability between different “flavors” of the runtime time-to-solution

Heterogeneous systems are becoming more popular — Associated callback function (general) system within a single application execution

— Several appearances on the Top500 and Green500 lists — Real-time manipulation of application data between cores ~ Dividing a heterogeneous

— Can be effective for small research clusters (greater perfor- entry [ accel ] void dotProduct ( (e.g. big vs. little endian encodings) workload across a set of hetero-

mance per dollar) int N, . .

Benefits of heterogeneous systems float a[N]<> Passed Parameters (i.e. from caller) T . geneots c'ores, ateis SUb._

el s s ke V[ 'Eg (Wmtenﬁgg!ggﬂggjﬁﬂfqmOdeD computations to the appropri-

readOnly : float b[N] <impl_obj—>myVector>, ate cores

— High flop rates per watt writeOnly : float ¢ <impl_obj—>myResult> <

] { . L. % Application Binary ‘ Application Binary \ Application Binary \ .
Tianhe_‘l A Lincoln Local Parameters (I.e. data Wlthln chare) E (compiled for architecture 1) (compiled for architecture 2) A (compiled for architecture N) _ ACCOU ntlng for the non_peer
X865 & GPUs x86s & GPUs %865 & GPUs inti- S e Bl 112 R T " " " relationships (or topology) of
Top500 #1 Top500 #22, Green500 #8 c = 0.0f: . i _ /N ;A\ /0 the cores (i.e. host cores and ac-
’ Roadrunner g for (i=0;i < N;i++) { Function Body ; eoe MW N B c/erators are not peers to one
x86s & Cells — afi] * blil: (host or accelerator) z node1l node2 nodeN
Nebulae Top500 #7 TSUBAME 2.0 C +=all 1; 2 another)
x86s & GPUs BAC x86s & GPUs } T Shared Interconnect
Top500 #3 ACE (x3 Top500 #4, Green500 #2+
p ?(865 & Ce(//S) p } dOtPrOdUCt_Ca”baCk; (_- Ca"baCk FunCtion (hOSt) Sender (Architecture A) /‘ data(senderfor Improved Support for GPUS
Kee n e I a n d ° - invoke object.entryMethod(data) L J“" Tﬁi;?gfe . . . _ g
eenelan Green500 #5 MariCel Gx?é@(TGIBLS;F ChareClass:dotProduct callback() { -~ T il The runtime tightens the execution model of sub-computations
Green500 #9 Condor POWERs & Cells Green500 #10 someOtherChare.someEntryMethod(c); message " Shared Interconnect  1--- cralgtrs when it is beneficial
x86s, GPUs, & Cells } { — W & — Start with an arbitrary execution model (asynchronous tasks)
— Take advantage of patterns (broadcasts, stencil patterns,
... Here comes the “but” ... n-body spatial decompositions, etc.)
As if parallel programming wasn’t already considered hard
enough, heterogeneous systems add additional difficulties Performance ona Heterogeneous System / .: broadcast
— Non-portable, architecture specific code l chare
— Mixture of different execution models (e.g. multicore host Heterogeneous applications may scale better on heterogeneous clusters (compared to a homogeneous cluster) prt
' — We demonstrate a simple MD program that scales better using a mixture of x86 and Cell processors (compared to just using Cells) N : data parallel
with GPU attached) h
— Load balancing is harder due to the mismatch in performance — Reaches 19.8% of peak using one dual-core x86 processor, four PS3 Cells, and four IBM blade Cells chares
characteristics of the various cores — Does not include any architecture specific code or code to translate data between architectures - other chares

— Makes use of three different core types (x86, PPE, SPE), three different SIMD extensions, two different memory schemes, and two

(messages)

Why Chal'm++‘,7 endian schemes (little and big endian) j >< j\ \ / - invocations

Nature of the Charm++ programming model
— Based on asynchronous tasks (unlike threads in MPI)

— Migratable chare objects allow data and computation to be Improved Support for MIC

[ i 300 / XB6_Z bt i A 4
load balanced dynamically by the runtime system / it EL R LB L \ . |
B nghly Scalable’ mature programming mOdel / blade 2 i = =L UL T e T We are Worklng onit.

! ors  Tracing  Experimental Feal

350

57725

hosts (3 timesieps] ——

NBG_1 iyt 1 O

L 250 ns3_2 .
Existing Infrastructure

' blade_3 = |l o e UL S
. | ps3_3 : 1 HiHIHHH ! HEEHEHESH
— Runtime system ‘

! blade_4 .

M & 200 \;. = . - > ‘I I ‘ : _?T | I ] I
— Load balancing framework g e R — - e e . Granularity
— Projections (performance visualization tool) & — The compiler assists with automatic
- / — granularity adjustments
- Chare C[O] o (N - p— — Distinguish between communication
CIE (_;og void entryMethod_2(MyMessage *msg) { .{/ N . d . I .
Chare 21| K7 delete msg; —=—QS20/PS3 Cell Pairs (no LDB) e ORI G I Gz T
iz Gl float myFloat = 3.14f: 50 —k— QS20/PS3 Cell Pairs (Max LDB) i — — Computation granularity largely
Chare A S L Q520/PS3 Cell Pairs + 2 Xeons (LDB) based on architecture characteristics
void entryMethod_1(){ 0 ‘ — Compilers focus on what they are
doSomeWork(); 0 1 2 3 4
MyMessage msg = new MyMessage(); Chare C[5] gOOd at (Sma” well-defined tasks)
B. Method_2 g i diatel Numb f Cell Pai
doMoreWork(); megy (FTEtns Mmediatey Chare €51 pmber ot et T — Programmers focus on what they are
b _ Chare E Simple MD program’s performance on our cluster Screenshot from the Projections performance visualization tool being good at (identifying high-level paral-
void entryMethod_3(int var1, float var2) { ...} Chare C[4] . . . il . - -
(NOTE: 1 Cell Pair = 1 PS3 Cell & 1 Q520 Blade Cell) used to show the MD program executing on our heterogeneous cluster. lelism within their applications)

Related Publications: PARALLEL

[1] David M. Kunzman and Laxmikant V. Kale, Programming Heterogeneous Clusters with Accelerators using Object-Based Programming, Journal of Scientific Programming 19 (2011), no. 1, 47-62, I0S Press.
[2] Laxmikant V. Kalé, David M. Kunzman, and Lukasz Wesolowski, Accelerator Support in the Charm++ Programming Model, Scientific Computing with Multicore and Accelerators (Jakub Kurzak, David A. Bader, and Jack Dongatrra, eds.), CRC Press (Taylor and Francis Group), December 2010. PRO GRAMMING LAB
[3] David M. Kunzman and Laxmikant V. Kalé. Towards a Framework for Abstracting Accelerators in Parallel Applications: Experience with Cell. In SC '09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, pages 1-12, New York, NY, USA, 2009. ACM. DEPT. OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

K




